STA 2019

1. (a) Let $\{x_n\}_{n\geq 1}$ be a sequence of real numbers converging to a finite real number a, as $n \to \infty$. Define

$$y_n = \begin{cases} x_n - \frac{1}{n} & \text{if } n = 3k, \\ 2x_n & \text{if } n = 3k - 1, \\ \frac{3x_n + 1}{3|x_n| + 1} & \text{if } n = 3k - 2, \end{cases}$$

for k = 1, 2, ... Find the values of a for which the sequence has three distinct limit points.

(b) Let $a_n = \int_0^1 (1 - x^2)^n dx$ for $n \ge 1$. Find $\lim_{n \to \infty} \sqrt[n]{a_n}$. Also show that $\sum_{n=1}^\infty a_n$ diverges. [6+6]=12

2. Let f be a real-valued, continuous, strictly increasing function defined on [0,1] with f(0) = 0 and f(1) = 1. Let g be the inverse function of f. Prove that

$$\int_0^1 f(x)dx + \int_0^1 g(y)dy = 1.$$
[12]

3. (a) Let \boldsymbol{x} be the $n \times 1$ vector with $x_i = i$ for i = 1, ..., n. Find the determinant of $I + \boldsymbol{x}\boldsymbol{x}^T$, where I is the identity matrix of order n.

(b) Let A and G be matrices of order $m \times n$ and $n \times m$, respectively, such that AGA = A. Show that the determinant of I + AG is non-zero.

$$[6+6]=12$$

4. Suppose that two distinct positive integers are chosen randomly from 1 to 50. What is the probability that their difference is divisible by 3? [12]

5. Consider a bivariate random vector (X_1, X_2) having joint density given by

$$f(x_1, x_2) = \begin{cases} 4x_1x_2, & \text{if } 0 \le x_1 \le 1, 0 \le x_2 \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Define two new random variables as $Y_1 = X_1/X_2$ and $Y_2 = X_1X_2$.

- a) Find the support of the joint distribution of (Y_1, Y_2) and represent it graphically.
- b) Derive the joint distribution of (Y_1, Y_2) .
- c) Using (b), or otherwise, calculate $P(Y_1 > 2, Y_2 > 1/4)$.

[4+3+5]=12

6. Suppose X_1, X_2, \ldots are independent and identically distributed random variables with $P(X_i = 1) = \frac{1}{4} = P(X_i = -1)$ and $P(X_i = 0) = \frac{1}{2}$ for all $i = 1, 2, \ldots$ Define $S_n = \sum_{i=1}^n X_i$ and $U_n = \operatorname{sgn}(S_n)$, for $n \ge 1$, where the sgn function is given by

$$\operatorname{sgn}(x) = \begin{cases} 1, & \text{if } x \ge 0, \\ -1, & \text{if } x < 0. \end{cases}$$

Find $\lim_{n \to \infty} P(U_n \le u)$ for $u \in \mathbb{R}$, and hence identify the limiting distribution of U_n . [12]

7. Let X_1, X_2, \ldots, X_n be independent and identically distributed having a common density f_{θ} where $\theta \in \Theta \subseteq \mathbb{R}$. Let $\hat{\theta}$ be the unique maximum likelihood estimator (MLE) of θ ; note that $\hat{\theta}$ solves the likelihood equation. Let $T(X_1, \ldots, X_n)$ be an efficient estimator of $\tau(\theta)$, a one-to-one function of the parameter θ , in the sense that T is unbiased for $\tau(\theta)$ and its variance attains the corresponding Cramer-Rao lower bound. Prove that T must be an MLE of $\tau(\theta)$. [12]

8. Suppose that a *n*-variate random vector $X = (X_1, X_2, \ldots, X_n)^T \sim N_n(\mu, I_n - \frac{1}{n}J_n)$, where J_n is $n \times n$ matrix with each entry 1. Define the multivariate log-normal random vector $Y = (Y_1, Y_2, \ldots, Y_n)^T$ through the relations $X_k = \log Y_k$ for $k = 1, \ldots, n$. Prove that the covariance matrix of Y can be expressed as DBD for some $n \times n$ matrix B and some diagonal matrix D. Find these matrices. [12]

9. It is believed that the number of daily hospital admissions on the average depends on whether it is in weekdays or in weekends. Based on records of daily admission counts from a hospital over 52 weeks, suggest a suitable model and corresponding analysis to test this belief. Write your notation and all the assumptions clearly, including limitation(s), if any.

[10+2]=12

10. Consider a randomized block design with v treatments and b blocks with v < b. But, suppose that observations under treatment i in block i are missing for i = 1, 2, ..., v, and the resulting design is denoted by \mathcal{D} .

- a) What are block sizes in \mathcal{D} ? Are the treatments equi-replicated in \mathcal{D} ?
- b) Is the design \mathcal{D} connected? Justify your answer.
- c) Using (b), or otherwise, prove that the design \mathcal{D} is not orthogonal.

[2+4+6]=12

